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The Transient Hot-Wire Technique:
A Numerical Approach1

M. J. Assael,2, 3 L. Karagiannidis,2 N. Malamataris,2 and
W. A. Wakeham4

The measurement of the thermal conductivity of a fluid by means of the tran-
sient hot-wire technique so far has made use of an analytical solution of the
energy conservation equation for an ideal model, coupled with a set of
approximate analytical corrections to account for small departures from the
model. For this solution to be valid, constraints were always imposed on the
experimental conditions and the construction of the apparatus, resulting in an
inability to measure the thermal conductivity of high-thermal diffusivity fluids.
In this paper, the set of energy conservation equations describing the transient
hot-wire apparatus is solved using the numerical finite-element method. Because
no approximate solutions are involved, this provides a much more general treat-
ment of the heat transfer processes taking part in the real experiment, removing
all the aforementioned constraints. In the case of the measurement of the
thermal conductivity of liquids (fluids with low thermal-diffusivity values), the
numerical solution fully agrees with the existing analytical solution. In the case
of the measurement of the thermal conductivity of gases, the present solution
allows the extension of the application of the transient hot-wire technique to
experimental conditions where the value of the thermal diffusivity of the fluid is
high.
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1. INTRODUCTION

The transient hot-wire technique is widely employed today for the accurate
measurement of the thermal conductivity of fluids, in both the liquid and
the gas phases, over a wide range of temperatures and pressures. However,
there are two regions of the thermodynamic state where the application of
the method presents a loss of accuracy. The first region is near the critical
point and the second, in the region where fluids exhibit high thermal dif-
fusivity values, i.e., the low-density region. The observed inability [ 1 ] of
thermal conductivity measurements in the latter region is very unfortunate,
as accurate zero-density thermal conductivity values are required by kinetic
theory treatments. Moreover, as has been stated elsewhere [2], the same
problem appears in the measurement of the thermal conductivity of
refrigerants in the vapor phase, since these fluids generally show a maxi-
mum pressure of 2 MPa along the saturation line. Previous studies that
attributed the observed inability to the compression work of the gas were
rejected, since a recent analytical and numerical study [3] has proved that
the effect of compressibility is always insignificant in the dilute-gas region.

In this paper, the energy conservation partial-differential set of equa-
tions that describe the transient hot-wire theory is solved using the numerical
finite-element method. A computer program was developed and employed
in order to study the evolving temperature field within the wire and the
fluid. From the comparison of the measured temperature rise and the
simulated one, the thermal conductivity of argon was obtained at high and
low pressures, in a transient hot-wire instrument. To conclude the analysis,
this numerical solution is compared with the analytical one employing (a)
the exact corrections given by Carslaw and Jaeger [4] and (b) the approxi-
mate corrections given by Healy et al. [5].

2. THEORY OF THE TRANSIENT HOT-WIRE TECHNIQUE

2.1. The Analytical Treatment

The detailed theory of the transient hot-wire technique is described
elsewhere [6]. The analytical working equation of the method is [6]:

where AT(r, t) is the transient temperature rise at a radial distance r in the
fluid, A and K are the thermal conductivity and thermal diffusivity of the
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fluid, respectively, q is the heat input power per unit length, and C is the
Euler's constant. Equation (1) describes the ideal model which cannot be
employed directly to the practical instrument. A number of analytical
corrections were developed [4] and imposed on Eq. (1) to eliminate the
departure of a practical instrument from the ideal one. The two major
applied corrections are as follows.

(a) The heat capacity correction, AThc, significant only at short
experimental times [4]:

with

In these expressions, a is the wire radius and the subscript "w" refers to
wire properties. Furthermore, J0 and J1 denote Bessel functions of the first
kind, of order zero and one, respectively, while Y0 and Y1 express Bessel
functions of the second kind, of order zero and one.

(b) The outer boundary correction, AT0b, significant only at long
experimental times:

where b is the wire-enclosure radius and an are the positive roots of the
equation

As can be seen from Eqs. (2)-(6), these corrections not only are math-
ematically too complicated but also cannot be calculated analytically.



Healy et al. [5] proposed approximate solutions of Eqs. (2) and (5) valid
for large values of (4kt/a2). These solutions together with Eq. (1) formed
a consistent set in order to calculate the thermal conductivity from the
measured temperature rise. The application of this methodology to liquids
and gases at moderate pressures has provided many reliable thermal con-
ductivity data over the last two decades. Unfortunately, the corrections
proposed by Healy et al. [5] proved to be inadequate [1, 7] for the
description of experimental runs at low densities, where fluids exhibit high
thermal diffusivity values. Consequently, until now measurements in this
region were avoided.

2.2. The Numerical Solution

The inability of the Healy methodology to describe low-density
experimental thermal conductivity data motivated us to apply a different
approach for the calculation of thermal conductivity from the measured
temperature rise. Hence, the numerical finite-element method (FEM) was
chosen in order to solve the complete set of energy conservation equations
that describe the heat transfer experimental processes. The choise of this
particular numerical method was dictated by the high accuracy the method
exhibits in computational heat transfer problems [8].

The energy equations to be solved are two coupled partial differential
equations, one for the wire, 0 < r ̂  a,

and one for the fluid, a^r < co,

The symbols p and Cp denote the density and the specific heat. On the
wire/fluid interface both the temperature and the heat flux are considered
to be continuous. This means that for r = a.,

The aforementioned set of equations is subject to the following initial and
boundary conditions.
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As can be seen from Eqs. (14) and (15), the problem is one-dimensional
with respect to radial direction. Therefore, the field of application is a
straight line, discretized in 250 finite elements, representing the 6-mm
actual radial distance, irregularly spaced. The mesh constructed is a lot
more dense at the wire/fluid interface. At each nodal point, the above equa-
tions are solved to calculate the value of the temperature rise. Since this is
a time-dependent problem, the solution is obtained using the forward dif-
ference (Euler) scheme [8]. Fortunately, the set of energy conservation
equations described above is linear. As a result, the derived set of algebraic
equations is also linear and is solved using a modification of the Gaussian
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Equations (7)-(12) are written in a dimensionless form using the following
dimensionless variables:

Substituting the aforementioned dimensionless variables in Eqs. (7)-(12),
the following set of dimensionless partial differential equations and initial
and boundary conditions is obtained:



elimination method (LU decomposition method) [9]. Hence, a computer
program was developed for the simulation of the measured temperature
rise and the consequent calculation of the thermal conductivity.

2.3. Case Studies

In order to check that the program is working properly and accurately,
it was first tested against a problem on conduction of heat in composite
solids, very similar to the transient hot-wire case, with a known analytical
solution [4]. The numerical solution of the temperature rise simulates the
analytical one within + 0.2%.

Consequently, the developed algorithm was tested against a transient
hot-wire experiment with toluene as the sample fluid. The measured tran-
sient temperature rise is compared against the computed temperature rise
in Table I. At this stage, the following three points need to be mentioned.

Table I. Comparison between Experimental and Computed (FEM)
Temperature Rise for Toluene

Time
(s)

0.1997
0.2085
0.2334
0.2605
0.2884
0.3212
0.3603
0.3989
0.4214
0.4718
0.5210
0.5518
0.6162
0.6475
0.6807
0.7211
0.7648
0.8087
0.8550
0.8953
0.9480

Temperature rise (K)

Experimental

2.321
2.343
2.388
2.433
2.478
2.523
2.568
2.613
2.635
2.680
2.726
2.748
2.793
2.816
2.838
2.862
2.884
2.906
2.929
2.952
2.974

Computed

2.278
2.303
2.350
2.394
2.437
2.482
2.530
2.573
2.595
2.641
2.685
2.709
2.752
2.777
2.797
2.820
2.846
2.866
2.889
2.913
2.933

Difference
(mK)

43
40
38
39
41
41
38
40
40
39
41
39
41
39
41
42
38
40
40
39
41
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Fig. 1. The temperature rise evolution in the wire and the fluid at
different times and axial distances.
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(a) Since the simulation program solves an energy conservation
equation within the metallic wire, it takes into account the
properties and the finite dimensions of the wire. Thus, the heat
capacity correction is fully taken into consideration.

(b) The temperature distribution function within the radius of the
wire can be calculated. From the integration of the temperature
distribution function over the wire radius, the value of the tran-
sient temperature rise is calculated for the whole wire and not
just at the wire/fluid interface.

(c) Finally, the imposition of boundary conditions at the wire
enclosure circumference, assumes the existence of a real isother-
mal wall at a finite radius and not at infinity and, therefore, the
outer boundary correction is also properly accounted for.



When examining Table I, one must keep in mind that the thermal conduc-
tivity is calculated from the slope of the temperature rise vs the logarithm
of the time. Therefore absolute differences in the temperature rise (about
40 mK) are insignificant in relation to the difference in slopes, which is only
+ 2 mK. Thus, the comparison shows that the slopes of the simulated and
the experimental temperature rises are identical. Hence, the correct value of
the thermal conductivity is calculated using the FEM for the theoretical
analysis of the experimental data. More experimental runs on liquid and
gases at elevated pressures were checked against the computer program
and the thermal conductivity computed at all times was accurately
obtained. It is therefore concluded that the FEM in the aforementioned
cases produces thermal conductivity values at least as accurate as those
produced by the approximate analytical solution. Furthermore, the imple-
mentation of the numerical method has the advantages of an easy check of
all other parameters that may influence the actual experiment and are
included in the energy conservation equations. An example of the tem-
perature evolution in the wire and the fluid is shown in Fig. 1.

3. EXPERIMENTAL PROCEDURE

The high accuracy attained in the calculation of the thermal conduc-
tivity values using the numerical FEM has led us to its application in the
analysis of thermal-conductivity measurements of fluids with high thermal
diffusivity values, e.g., argon at room temperature and atmospheric
pressure. Therefore, a series of measurements was performed in a transient
hot-wire instrument especially constructed for measurements of the thermal
conductivity of refrigerants in the vapor phase. The full description of the
instrument is given in detail elsewhere [2]. Transient measurements were
performed in argon at 300 K and pressures from 0.15 up to 4.8 MPa. The
experimental temperature rise data were analyzed applying three
methodologies.

(A) The analytical solution with approximate corrections proposed
by Healy et al. [5].

(B) The analytical solution with exact corrections proposed by
Carslaw and Jaeger [4], As these corrections cannot also be
calculated analytically, the 3/4 Simpson's numerical integration
technique was adopted for the calculation of Eqs. (2) and (5). In
the case of the outer boundary correction, 20 positive roots of
Eq. (6) were found to be enough for the accurate calculation of
the correction.

(C) The numerical solution using the FEM.
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Table H. Thermal Conductivity Values (mW • m ~ 1 , K ~ 1 ) of Argon at 300 K
at Different Pressures

Pressure
(MPa)

4.80
3.40
2.60
1.50
1.05
0.35
0.14

Analytical solution +

Healy et al.'s [5]
approximate
corrections

19.80
19.10
18.80
18.32
18.10
17.55
17.30

Carslaw and
Jaeger's [4]
corrections

19.84
19.21
18.78
18.34
18.15
17.90
17.72

FEM
numerical
solution

19.87
19.20
18.79
18.36
18.14
17.92
17.73

Literature
value
[10]

19.80
19.16
18.84
18.39
18.21
17.93
17.83

The results obtained using these three methodologies are shown in Table II.
In the same table, for comparison purposes, the "correct" values of the
thermal conductivity of argon [10] are also shown. The thermal conduc-
tivity values calculated by the numerical FEM and the analytical solution
using the exact corrections proposed by Carslaw and Jaeger [4] agree very
well both mutually and with the literature values. The observed difference,
in Table II, between the thermal conductivity values calculated by the

Fig. 2. Deviations from the temperature rise calculated by the FEM
approach, of (a) (•) the ideal solution incorporating Carslaw and Jaeger
corrections [4], (b) (O) the Healy et al. equations [5], and (c) (A) the
Taxis and Stephan approximate equations [7], for argon at 300 K and
0.15 MPa, for an isothermal wall at a 6-mm radial distance from the wire.



analytical solution with the corrections proposed by Healy et al. [5] and
the values calculated by the other two methodologies are attributed in
general to the approximations inserted by Healy et al., in order to simplify
both the heat capacity and the outer boundary corrections.

The advantage of the FEM can be clearly seen in the treatment of
the heat capacity correction. Although the outer boundary correction can
be rendered very small by chosing a large diameter enclosure, the heat
capacity correction still must be calculated. In Fig. 2 we show a com-
parison of the two aforementioned approaches from the FEM solution, for
an experimental run of argon at 300 K and 0.15 MPa. The numerical FEM
and the analytical solution using the exact corrections proposed by Car-
slaw and Jaeger [4] are very similar as expected. An approximate solution
given by Taxis and Stephan [7] is also included in Fig. 2.

4. CONCLUSIONS

Based on the FEM a computer program was successfully developed that
is able to solve the energy conservation equations that describe the heat
transfer processes, taking place during an experimental run in a transient hot-
wire instrument. Comparisons between the different existing methodologies
employed to compute the thermal conductivity from experimental data
revealed differences, especially for gases in the low pressure region. In this
region both the heat capacity and the outer boundary corrections are
significant. Therefore, for accurate theoretical analysis of the experimental
data produced by the transient hot-wire technique, either the complete set
of corrections proposed by Carslaw and Jaeger [4] must be employed or,
better, a numerical FEM. For the outer boundary correction, either the
wall enclosure must be moved away from the wire or, again, a FEM
approach should be employed. The FEM calculates all the significant
corrections to the transient hot-wire ideal model, avoiding extra simplifica-
tion of the working equations to analytical forms that cannot simulate
accurately the experimentally measured temperature rise, especially for the
case of fluids with high thermal diffusivity values.

REFERENCES

1. S. F. Y. Li, M. Papadaki, and W. A. Wakeham, High Temp. High Press. 25:451 (1993)
2. M. J. Assael, N. Malamataris, and L. Karagiannidis, Int. J. Thermophys. 17:341 (1996).
3. M. J. Assael, L. Karagiannidis, S. M. Richardson, and W. A. Wakeham, Int. J.

Thermophys. 13:223 (1992).
4. H. S. Carslaw and Jaeger, Conduction of Heat in Solids (Oxford University Press, London,

1959).

388 Assael, Karagiannidis, Malamataris, and Wakeham



5. J. J. Healy, J. J. de Groot, and J. Kestin, Physica 82C:392 (1976).
6. W. A. Wakeham, J. V. Sengers, and A. Nagashima, Measurements of the Transport

Properties of Fluids; Experimental Thermodynamics (Blackwell Scientific, Oxford, 1991),
Vol. Ill, Chap. 7.

7. B. Taxis and K. Stephan, Int. J. Thermophys. 15:141 (1995).
8. K. H. Huebner, E. A. Thornton, and T. G. Byrom, The Finite Element Method for Engin-

neers (Wiley, New York, 1995).
9. C. F. Gerald, Applied Numerical Analysis (Addison Wesley, Reading, MA, 1978).

10. B. W. Tiesinga, E. P. Sakonidou, H. R. van den Berg, J. Luettmer-Strathmann, and
J. V. Sengers, J. Chem. Phys. 101:6944 (1994).

Transient Hot-Wire Technique 389


